+49 30 300 2440 00 – Mo bis Fr von 8:30 - 17 Uhr

Mathebuch

Online Mathe üben mit bettermarks
  • Über 2.000 Übungen mit über 100.000 Aufgaben
  • Interaktive Eingaben, Lösungswege und Tipps
  • Automatische Auswertungen und Korrektur
  • Erkennung von Wissenslücken
Beispiele für Funktionen

Hier kannst du wichtige Beispiele für Funktionen kennenlernen. Proportionale und antiproportionale Zuordnungen als Funktionen Lineare Funktionen kennenlernen Lineare, antiproportionale und quadratische Funktionen im Vergleich Definitionslücken bei Funktionstermen Nullstellen bestimmen Proportionale und antiproportionale Zuordnungen als Funktionen Proportionale Zuordnungen sind spezielle Funktionen. Die Zuordnungsvorschrift jeder proportionalen Zuordnung lässt sich immer in der Form x m x schreiben, […]

Berechnen und Umformen von Termen

Berechnen von Termwerten Ausklammern in Termen mit Potenzen Die erste binomische Formel Die zweite binomische Formel Die dritte binomische Formel Terme aufstellen Terme zu geometrischen Formen und Figuren Multiplikation von Klammerausdrücken Ausklammern Berechnen von Termwerten Viele Alltagssituationen (z. B. die monatliche Handyrechnung) oder geometrische Sachverhalte (Flächeninhalt eines Rechtecks) lassen sich durch Terme mit Variablen beschreiben. […]

Berechnen von Termwerten

In diesen Erklärungen erfährst du, wie du in einem Term Variablen durch Zahlenwerte ersetzen und wie du den Wert eines Terms berechnen kannst. Berechnen von Termwerten Berechnen von Termwerten Viele Alltagssituationen (z. B. die monatliche Handyrechnung) oder geometrische Sachverhalte (Flächeninhalt eines Rechtecks) lassen sich durch Terme mit Variablen beschreiben. Um einen Termwert bestimmen zu können, […]

Berechnungen an Figuren und Körpern

Hier erfährst du, wie du mit dem Satz des Pythagoras Streckenlängen in Figuren und Körpern berechnen kannst. Höhe im gleichseitigen Dreieck Diagonale im Quadrat Raumdiagonale im Quader Höhe einer Pyramide Höhe im gleichseitigen Dreieck In einem gleichseitigen Dreieck mit der Seitenlänge a und der Höhe h gilt: h = a 2 3 Durch die Höhe […]

Berechnungen an Figuren und Körpern

Hier erfährst du, wie du mit den Winkelfunktionen unzugängliche Streckenlängen und Winkel in Figuren und Körpern berechnen kannst. Winkelfunktionen und Seitenverhältnisse Lösen von Anwendungsaufgaben Schritt für Schritt Winkelfunktionen und Seitenverhältnisse Je nach Wahl des Winkels bekommen die Seiten im rechtwinkligen Dreieck „neue Namen“. Die Zuordnungen „Winkel“ -> „Seitenverhältnis“ sind eindeutig und definieren die Winkelfunktionen Sinus, […]

Berechnungen an rechtwinkligen Dreiecken

Hier erfährst du, wie du mit Hilfe der Winkelfunktionen Sinus, Kosinus und Tangens Seitenlängen und Winkelgrößen am rechtwinkligen Dreieck berechnen kannst und wie du dabei den Taschenrechner richtig benutzt. Winkelfunktionen und Seitenverhältnisse Benutzung des Taschenrechners Berechnung von Winkeln und Seitenlängen Winkelfunktionen und Seitenverhältnisse Da rechtwinklige Dreiecke mit gleich großen Winkeln ähnlich zueinander sind, sind die […]

Besondere Linien im Dreieck

Hier erfährst du, welche besonderen Linien (Transversalen) du in Dreiecke einzeichnen kannst, welche Eigenschaften diese Linien haben und wie du diese Linien für weiterführende Betrachtungen zu Dreiecken nutzen kannst.Der Begriff „Transversale“ kommt aus dem Lateinischen und heißt „Durchgehende“ oder „Querende“.Es gibt die Mittelsenkrechten, die Höhen, die Winkelhalbierenden und die Seitenhalbierenden.Wie du die Transversalen konstruieren kannst, […]

Besondere Punkte linearer Funktionen

Hier erfährst du, welche besonderen Punkte eine lineare Funktion hat, wie du sie bestimmst und welche Bedeutung diese Punkte in Sachsituationen haben. Schnittpunkte der Funktionsgraphen mit den Koordinatenachsen Berechnen der Nullstelle Bestimmen des y-Achsenabschnitts Berechnen des y-Achsenabschnitts Bedeutung der Achsenabschnitte in Sachsituationen Schnittpunkt zweier Funktionsgraphen Schnittpunkte der Funktionsgraphen mit den Koordinatenachsen Jeder Funktionsgraph, der nicht […]

Beziehungen zwischen Winkeln

Neben- und Scheitelwinkel an Geradenkreuzungen identifizieren Eigenschaften von Neben- und Scheitelwinkel an Geradenkreuzungen Neben- und Scheitelwinkel an Geradenkreuzungen berechnen Stufen- und Wechselwinkel an geschnittenen Parallelen identifizieren Eigenschaften von Neben-, Scheitel-, Stufen- und Wechselwinkeln an geschnittenen Parallelen Neben-, Scheitel-, Stufen- und Wechselwinkel an geschnittenen Parallelen berechnen Nebenwinkel mit Hilfe von Gleichungen berechnen Winkel an Doppelparallelen berechnen […]

Binomische Formeln

Hier erfährst du, was binomische Formeln sind und wie du sie geschickt zum Lösen von Aufgaben verwenden kannst.Die binomischen Formeln beschreiben einen Spezialfall der Multiplikation von zwei Klammertermen.Das Wort „binomisch“ kommt aus dem Lateinischen von „bi“ + „nomen“ und bedeutet so viel wie „zwei Namen“, d. h. die Klammern enthalten genau zwei Summanden oder eine […]

Erfolgreich Mathe lernen mit bettermarks

Wirkung wissenschaftlich bewiesen

Über 100 Millionen gerechnete Aufgaben pro Jahr

In Schulen in über zehn Ländern weltweit im Einsatz

© Copyright 2008 bis 2020 - bettermarks GmbH - All Rights Reserved
smartphone