Telefon: (030) 300 2440 00 
– Mo bis Fr von 8:30 - 17 Uhr
Über unsNewsKontakt
LernenLehrenWirkungPreiseHilfeAppEinloggen

Lineare Gleichungen und Ungleichungen

Online Mathe üben

  • Interaktive Aufgaben, Lösungswege und Tipps
  • Automatische Auswertungen und Korrektur
  • Erkennung von Wissenslücken

Ich bin Schüler

Ich bin Elternteil

Ich bin Lehrer

Additionsverfahren zum Lösen linearer Gleichungssysteme

Hier erfährst du, wie du mit dem Additionsverfahren lineare Gleichungssysteme mit zwei Variablen lösen kannst. Lösen von linearen Gleichungssystemen Anzahl der Lösungen Lösen von linearen Gleichungssystemen Du kannst zum Lösen von Gleichungssystemen mit zwei linearen Gleichungen das Additionsverfahren nutzen. Die beiden Gleichungen kannst du jeweils im Waagemodell betrachten. Beide Waagen befinden sich im Gleichgewicht. Wenn du die Inhalte der linken Seiten und die Inhalte der rechten Seiten gemeinsam auf die entsprechenden Seiten einer Waage legst, erhältst du wieder ein Gleichgewicht. Die Summe der Terme der linken Seiten der Gleichungen ist also genauso groß wie die Summe der Terme der rechten…

Anwendungen zu Gleichungen

Hier erfährst du anhand verschiedener Beispiele, wie man mathematische Fragestellungen mit Hilfe von Gleichungen lösen kann. Wie löst man Anwendungsaufgaben? Zahlenrätsel Altersrätsel Bewegungsaufgaben Historische Aufgaben /Märchenhaftes Wie löst man Anwendungsaufgaben? Anwendungsaufgaben, Rätsel und viele Probleme aus dem Alltag kannst du lösen, indem du für die beschriebene Situation eine Gleichung aufstellst und diese anschließend löst. Es ist hilfreich, wenn du dich dabei an folgende Arbeitsschritte hältst: 1.Variable festlegen2.Terme aufstellen3.Bestimmungsgleichung aufstellen4.Bestimmungsgleichung lösen5.Inhaltliche Probe der Lösung 6.Antwort formulieren Zahlenrätsel Zahlenrätsel sind die einfachste Form der Textaufgaben, denn bei Zahlenrätseln werden die Rechenvorschriften direkt formuliert, du musst sie nur in Terme „übersetzen“. Die Summe…

Anwendungen zu linearen Gleichungssystemen

Hier erfährst du, wie du Textaufgaben mit Hilfe von linearen Gleichungssystemen lösen kannst. Lösen von Anwendungsaufgaben Schritt für Schritt Lösen von Anwendungsaufgaben Schritt für Schritt Bei Textaufgaben ist es hilfreich, Schritt für Schritt vorzugehen. 1. Variablen einführenDu überlegst, was mit Hilfe der Variablen beschrieben werden soll. 2. Gleichungen aufstellenDu überlegst, wie die Größen, für die du die Variablen gewählt hast, miteinander in Beziehung stehen und wie du diese Beziehungen durch Gleichungen formulieren kannst. 3. Gleichungssystem lösenDu löst das dabei entstehende lineare Gleichungssystem. 4.Ergebnis am Sachverhalt überprüfenDu überprüfst, ob die Lösung des Gleichungssystems auch eine Lösung für die konkrete Fragestellung ist.…

Anwendungen zu Ungleichungen

Hier erfährst du anhand verschiedener Beispiele, wie du mathematische Fragestellungen mit Hilfe von Ungleichungen lösen kannst. Wie löst man Textaufgaben? Zahlenrätsel Mischungsaufgaben Wie löst man Textaufgaben? Die Anwendungen, Rätsel und Probleme aus dem Alltag, die in den Beispielen aufgeführt sind, lassen sich lösen, indem du Ungleichungen aufstellst und diese löst. Es ist hilfreich, wenn du dich dabei an folgende Arbeitsschritte hältst. In einigen Fällen kannst du einzelne Lösungsschritte auch überspringen oder weglassen. Zahlenrätsel Zahlenrätsel sind eine Form von Textaufgaben, bei denen Rechenvorschriften direkt formuliert sind. Du kannst sie in Terme „übersetzen“ und wie in den Beispielen als Ungleichung formulieren, die…

Einsetzungsverfahren zum Lösen linearer Gleichungssysteme

Hier erfährst du, wie du mit dem Einsetzungsverfahren lineare Gleichungssysteme mit zwei Variablen lösen kannst. Lösen von linearen Gleichungssystemen Anzahl der Lösungen Lösen von linearen Gleichungssystemen Du kannst zum Lösen von Gleichungssystemen mit zwei linearen Gleichungen das Einsetzungsverfahren nutzen. Ziel dieses Verfahrens ist, eine Gleichung zu erhalten, die nur noch eine Variable enthält. Beim Einsetzungsverfahren wird eine Gleichung so umgestellt, dass eine Variable isoliert auf einer Seite der Gleichung steht. Der Term auf der anderen Seite der umgestellten Gleichung wird dann für die entsprechende Variable in der anderen Gleichung eingesetzt. Anschließend löst du die Gleichung nach der verbleibenden Variablen auf.…

Gleichsetzungsverfahren zum Lösen linearer Gleichungssysteme

Hier erfährst du, wie du mit dem Gleichsetzungsverfahren lineare Gleichungssysteme mit zwei Variablen lösen kannst. Lösen von linearen Gleichungssystemen Anzahl der Lösungen Lösen von linearen Gleichungssystemen Du kannst zum Lösen von Gleichungssystemen mit zwei linearen Gleichungen das Gleichsetzungsverfahren nutzen. Ziel dieses Verfahrens ist, eine Gleichung zu erhalten, die nur noch eine Variable enthält. Wenn bei beiden Gleichungen auf der einen Seite der Gleichung nur die gleiche Variable steht, kannst du die beiden Terme auf der anderen Seite der Gleichung gleichsetzen. Löse folgendes Gleichungssystem in ℚ: Terme gleichsetzen Auf der linken Seite steht jeweils nur y . Du setzt die Terme…

Gleichungen erkennen und aufstellen

Hier erfährst du, wie du aus Grafiken und Texten mathematische Gleichungen aufstellen kannst. Was ist eine Gleichung? Gleichungen mit einer Variablen am Waagemodell Addition und Subtraktion mit einer Variablen am Zahlenstrahl Multiplikation mit einer Variablen am Zahlenstrahl Gleichungen mit einer Variablen in Textaufgaben Was ist eine Gleichung? Eine Gleichung besteht aus zwei Termen, die durch ein Gleichheitszeichen miteinander verbunden sind. x - = x + = x + x = Das ist die einfachste Form einer Gleichung. + = * , denn = Gleichungen mit einer Variablen am Waagemodell Gleichungen kannst du mit Hilfe eines Waagemodells darstellen. Die beiden Waagschalen…

Grafisches Lösen linearer Gleichungssysteme

Hier erfährst du, wie du lineare Gleichungssysteme mit zwei Variablen grafisch lösen kannst. Lineare Gleichungssysteme Grafisches Lösen von linearen Gleichungssystemen Koeffizienten und Absolutglieder in linearen Gleichungssystemen Lineare Gleichungssysteme Zwei lineare Gleichungen mit zwei Variablen bilden ein lineares Gleichungssystem. Ein Zahlenpaar, das beide lineare Gleichungen erfüllt, wird Lösung des linearen Gleichungssystems genannt. Die linearen Gleichungen eines Gleichungssystems werden üblicherweise mit römischen Zahlen nummeriert (I und II). Lösung eines linearen Gleichungssystems Prüfe, ob das Zahlenpaar (8;2) eine Lösung des linearen Gleichungssystems ist. Werte einsetzen Du setzt in die Gleichungen I und II für x den Wert und für y den Wert ein…

Grundlagen zu Ungleichungen

Hier erfährst du, wie du aus Grafiken und Textaufgaben Ungleichungen erkennen und aufstellen kannst. Was ist eine Ungleichung? Ungleichungen mit einer Variablen am Waagemodell Ungleichungen in Sachzusammenhängen Ungleichungen an der Zahlengeraden Was ist eine Ungleichung? Eine Ungleichung besteht aus zwei Termen, die durch ein Relationszeichen (< „ist kleiner als“, > “ist größer als“) miteinander verbunden sind. Oft verwendet man auch ≤ oder ≥ für „ist kleiner als oder gleich“ und „ist größer als oder gleich“. Beispiele für Ungleichungen x - gt x + lt x - x ≤ 3 + gt * Auch das ist eine Ungleichung. Auf der linken…

Lineare Gleichungen mit zwei Variablen

Lösungen linearer Gleichungen mit zwei Variablen bestimmen Lösungsmenge linearer Gleichungen mit zwei Variablen graphisch darstellen Lineare Gleichungen mit zwei Variablen Geradengleichungen zuordnen Lineare Gleichungen mit zwei Variablen, Geradengleichungen und Wertepaare einander zuordnen Lösungen linearer Gleichungen mit zwei Variablen bestimmen Eine lineare Gleichung mit zwei Variablen ist eine Gleichung der Form a x + b y = c , wobei a , b und c Konstanten sind und a and b ungleich null. Ein Beispiel ist y = x - . Ein Wertepaar x | y ist Lösung einer Gleichung, wenn der x -Wert und der y -Wert die Gleichung erfüllen.…

Lösen linearer Gleichungssysteme mit drei Variablen

Hier erfährst du, wie du Gleichungssysteme mit drei Variablen systematisch in Dreiecksgestalt bringst, um sie zu lösen. Lineare Gleichungssysteme in Dreiecksgestalt lösen Allgemeines lineares Gleichungssystem mit drei Variablen lösen Lineare Gleichungssysteme in Dreiecksgestalt lösen Ein lineares Gleichungssystem ist nur dann eindeutig lösbar, wenn es aus mindestens so vielen Gleichungen besteht wie Variablen darin enthalten sind. Aber auch in diesem Fall ist die eindeutige Lösbarkeit nicht immer gegeben. Wenn ein Dreieckssystem allerdings in Dreiecksgestalt gegeben ist, dann lässt es sich schrittweise durch Einsetzen lösen. Die Form des Gleichungssystems entspricht einem Dreieck, da von der ersten zur letzten Gleichung jeweils eine Variable…

Lösen von Gleichungen durch Äquivalenzumformungen

Hier erfährst du, wie du Gleichungen systematisch mit Hilfe von äquivalenzumformungen lösen kannst und wie du überprüfst, ob die Lösung richtig ist. äquivalente Gleichungen Gleichungen lösen durch äquivalenzumformungen äquivalenzumformungen am Waagemodell Besondere Lösungsmengen äquivalente Gleichungen Zwei Gleichungen sind äquivalent , wenn sie dieselbe Lösungsmenge haben. Die Gleichungen 3x + 7 = 16 und x = 3 sind äquivalent, denn beide Gleichungen haben die Lösungsmenge L = {3}. Die Gleichungen 3x + 7 = 16 und 3x + 6 = 15 sind äquivalent, denn beide Gleichungen haben die Lösungsmenge L = {3}. Die Gleichungen 3x + 7 = 16 und 3x…

Lösen von Gleichungen durch Probieren

Hier erfährst du, wie du Gleichungen durch Probieren löst und wie du überprüfst, ob eine gegebene Zahl Lösung einer Gleichung ist. In einer Gleichung, die eine Variable enthält, kannst du die Variable durch Zahlen ersetzen. Dabei entsteht entweder eine wahre oder eine falsche Aussage. Eine Gleichung lösen heißt, alle die Zahlen aus der Grundmenge zu finden, die beim Einsetzen die Gleichung zu einer wahren Aussage machen. Die Menge aller Lösungen heißt Lösungsmenge der Gleichung. Lösen der Ergänzungsaufgabe Lösung einer Gleichung überprüfen Lösen von Gleichungen mit Angabe einer Grundmenge Gleichung lösen durch Probieren Gleichung lösen durch systematisches Probieren Lösen der Ergänzungsaufgabe…

Lösen von Ungleichungen

Hier erfährst du, wie du Ungleichungen systematisch mit Hilfe von äquivalenzumformungen lösen und wie du überprüfen kannst, ob die Lösung richtig ist. Ungleichungen lösen durch äquivalenzumformungen Angabe der Lösungsmenge Ungleichungen mit negativen Zahlen multiplizieren Ungleichungen lösen durch äquivalenzumformungen Durch äquivalenzumformungen kannst du Ungleichungen verändern, ohne deren Lösungsmenge zu ändern.Man sagt dann, dass die Variable durch diese Umformungen isoliert wird, bzw. die Ungleichung nach der Variablen „aufgelöst“ wird.Folgende Umformungen verändern die Lösungsmenge einer Ungleichung nicht, sind also äquivalenzumformungen: Jede Termvereinfachung auf beiden Seiten, wie zum Beispiel Klammern auflösen oder Zusammenfassen gleichartiger Terme, ändert die Lösungsmenge der Ungleichung nicht.Auf die Multiplikation mit…

Wissen über lineare Gleichungssysteme

Hier erfährst du, unter welchen Bedingungen es sinnvoll ist, ein lineares Gleichungssystem zeichnerisch zu lösen und wie du beim rechnerischen Lösen das Additions-, Einsetzungs- oder Gleichsetzungsverfahren geschickt verwenden kannst. Auswahl eines günstigen Verfahrens zum Lösen eines linearen Gleichungssystems Knobelaufgaben zu linearen Gleichungssystemen Auswahl eines günstigen Verfahrens zum Lösen eines linearen Gleichungssystems Jedes lineare Gleichungssystem mit zwei Variablen kannst du zeichnerisch sowie auch rechnerisch mit dem Gleichsetzungs-, dem Einsetzungs- oder dem Additionsverfahren lösen. Manchmal bietet sich ein bestimmtes Verfahren direkt an: - Grafisches Lösen durch das Zeichnen von zwei Geraden: Dieses Verfahren verwendest du, wenn die beiden linearen Gleichungen als zwei…


Jetzt starten mit bettermarks

Ich bin LehrerIch bin Elternteil

Erfolgreich Mathe lernen mit bettermarks.

Mit den adaptiven Mathebüchern von bettermarks können Schüler Aufgaben auf dem Tablet, dem Computer und dem Smartphone rechnen.
Mehr erfahren ›

bettermarks

StartseiteMathe-Portal
Lehren
LernenPreiseHilfe

Unternehmen

bettermarks.com
Über unsNewsPresseJobsAnfahrtKontakt

Service

RegistrierungLoginPasswort vergessenOnline-Schulung
(030) 300 2440 00 
Montag bis Freitag 8:30 - 17 Uhr
© Copyright 2017 - bettermarks GmbH - All Rights Reserved.
ImpressumAGBDatenschutz
twitterfacebookgoogle-pluslinkedinyoutubexingmenu