Telefon: (030) 300 2440 00 
– Mo bis Fr von 8:30 - 17 Uhr
Über unsNewsKontakt
LernenLehrenWirkungPreiseHilfeAppEinloggen

Additionsverfahren zum Lösen linearer Gleichungssysteme

Online Mathe üben

  • Interaktive Aufgaben, Lösungswege und Tipps
  • Automatische Auswertungen und Korrektur
  • Erkennung von Wissenslücken

Ich bin Schüler

Ich bin Elternteil

Ich bin Lehrer

Hier erfährst du, wie du mit dem Additionsverfahren lineare Gleichungssysteme mit zwei Variablen lösen kannst.

Lösen von linearen Gleichungssystemen

Du kannst zum Lösen von Gleichungssystemen mit zwei linearen Gleichungen das Additionsverfahren nutzen.

Die beiden Gleichungen kannst du jeweils im Waagemodell betrachten. Beide Waagen befinden sich im Gleichgewicht.

Wenn du die Inhalte der linken Seiten und die Inhalte der rechten Seiten gemeinsam auf die entsprechenden Seiten einer Waage legst, erhältst du wieder ein Gleichgewicht.

Die Summe der Terme der linken Seiten der Gleichungen ist also genauso groß wie die Summe der Terme der rechten Seiten der Gleichungen.

Ziel dieses Verfahrens ist, eine Gleichung zu erhalten, die nur noch eine Variable enthält.

Eine Variable fällt weg, wenn der Koeffizient einer Variablen in einer Gleichung die Gegenzahl des Koeffizienten derselben Variablen in der anderen Gleichung ist.

Die Koeffizienten sind Gegenzahlen

Löse folgendes Gleichungssystem in ℚ:

/wp-content/uploads/media/kem_LGuU_LGuUELGSAddv_1.jpg

Gleichungen addieren
Achte darauf, dass die Variablen in den Gleichungen untereinander stehen.

Der Koeffizient von x in der ersten Gleichung (6) ist die Gegenzahl des Koeffizienten von x in der zweiten Gleichung (-6).

Um die Terme mit x zu eliminieren, brauchst du also nur die Gleichungen zu addieren.

Anzahl der Lösungen bestimmen
Du löst die Gleichung

9 y = 18

:

/wp-content/uploads/media/kem_LGuU_LGuUELGSAddv_2.jpg

Das Gleichungssystem hat genau eine Lösung, da du für y einen eindeutigen Wert erhältst.

Wie viele Lösungen hat das Gleichungssystem in ℚ?

/wp-content/uploads/media/kem_LGuU_LGuUELGSAddv_3.jpg

Lösungen berechnen
Du hast y bereits im vorigen Schritt berechnet. Um x zu berechnen, setzt du

y = -2

in eine der Ausgangsgleichungen ein:

/wp-content/uploads/media/kem_LGuU_LGuUELGSAddv_4.jpg

Du kannst dein Ergebnis anhand der zweiten Gleichung überprüfen. Ist die Lösung richtig, erhältst du hier das gleiche Ergebnis.

/wp-content/uploads/media/kem_LGuU_LGuUELGSAddv_5.jpg

y = 2 und x =

1 2

Lösungsmenge bestimmen
Das Zahlenpaar

x = 1 2

und

y = 2

löst die Gleichung.

Du schreibst die Lösung (in runden Klammern) als Zahlenpaar

(x;y) = 1 2 ;2

. Du schreibst für die Lösungsmenge kurz L = { 1 2 ; -6 }.

L = { 1 2 ; 2 }

Koeffizienten sind gleich - Multiplikation mit -1

Durch das Addieren zweier Gleichungen erhältst du nicht immer sofort eine Gleichung mit einer Variablen. Du kannst die Gleichungen so umformen, dass bei einer der Variablen der Koeffizient in der einen Gleichung die Gegenzahl des Koeffizienten derselben Variablen in der anderen Gleichung ist.

Wenn die Koeffizienten derselben Variablen in beiden Gleichungen gleich sind, multiplizierst du eine der Gleichungen mit -1.

Löse folgendes Gleichungssystem in ℚ:

/wp-content/uploads/media/kem_LGuU_LGuUELGSAddv_6.jpg

In der Gleichung ist kein Koeffizient einer Variablen die Gegenzahl des Koeffizienten derselben Variablen in der anderen Gleichung.

Die Koeffizienten von x haben hier jedoch in beiden Gleichungen den gleichen Wert. Du multiplizierst eine der beiden Gleichungen mit -1, sodass du die Koeffizienten 3 und -3 erhältst.

/wp-content/uploads/media/kem_LGuU_LGuUELGSAddv_7.jpg
Gleichungen addieren
Jetzt kannst du die Gleichungen addieren.

Die Variable x fällt weg 3 x + -3 x = 0 und du kannst y berechnen.

/wp-content/uploads/media/kem_LGuU_LGuUELGSAddv_8.jpg
Anzahl der Lösungen bestimmen
Du löst die Gleichung

-4 y = 8

:

/wp-content/uploads/media/kem_LGuU_LGuUELGSAddv_9.jpg

Das Gleichungssystem hat genau eine Lösung, da du für y einen eindeutigen Wert erhältst.

Wie viele Lösungen hat das Gleichungssystem in ℚ?

/wp-content/uploads/media/kem_LGuU_LGuUELGSAddv_10.jpg

Lösungsmenge bestimmen
Du hast y bereits im vorigen Schritt berechnet. Um x zu berechnen, setzt du y = -2 in eine der Ausgangsgleichungen ein:/wp-content/uploads/media/kem_LGuU_LGuUELGSAddv_11.jpg

Die Probe bestätigt das Ergebnis:/wp-content/uploads/media/kem_LGuU_LGuUELGSAddv_12.jpg

L = {(5;-2)}

Koeffizienten sind ungleich

Du formst die Gleichungen so um, dass bei einer Variablen der Koeffizient in der einen Gleichung die Gegenzahl des Koeffizienten derselben Variablen in der anderen Gleichung ist. Dazu kannst du das kleinste gemeinsame Vielfache (kgV) der Koeffizienten einer Variablen in beiden Gleichungen verwenden.

Löse folgendes Gleichungssystem in ℚ:

/wp-content/uploads/media/kem_LGuU_LGuUELGSAddv_13.jpg

Multiplizieren
In der Gleichung ist kein Koeffizient einer Variablen die Gegenzahl des Koeffizienten derselben Variablen in der anderen Gleichung.

Da der Koeffizient 15 von y in Gleichung II (-15) ein Vielfaches des Koeffizienten 3 von y in Gleichung I ist, ist es sinnvoll, die Gleichung I mit 5 zu multiplizieren, denn

5 * 3 = 15

und 15 ist die Gegenzahl von -15.

/wp-content/uploads/media/kem_LGuU_LGuUELGSAddv_14.jpg
Lineares Gleichungssystem lösen
Du addierst beide Gleichungen: /wp-content/uploads/media/kem_LGuU_LGuUELGSAddv_15.jpg

Du berechnest x:/wp-content/uploads/media/kem_LGuU_LGuUELGSAddv_16.jpgDas Gleichungssystem hat genau eine Lösung.

Du setzt den Wert für x in eine Ausgangsgleichung ein und erhältst den Wert für y: /wp-content/uploads/media/kem_LGuU_LGuUELGSAddv_17.jpg

L={(2;1)}

Koeffizienten sind ungleich

Löse folgendes Gleichungssystem in ℚ:

/wp-content/uploads/media/kem_LGuU_LGuUELGSAddv_18.jpg

Multiplizieren
In der Gleichung ist kein Koeffizient einer Variablen die Gegenzahl des Koeffizienten derselben Variablen in der anderen Gleichung. Du erweiterst beide Gleichungen so, dass ein Koeffizient der einen Variablen die Gegenzahl des Koeffizienten derselben Variablen in der anderen Gleichung ist.

Das kleinste gemeinsame Vielfache der Koeffizienten von y ist

12

.

Du multiplizierst die Gleichungen jeweils so, dass 12 und -12 die neuen Koeffizienten von y sind:/wp-content/uploads/media/kem_LGuU_LGuUELGSAddv_19.jpg

/wp-content/uploads/media/kem_LGuU_LGuUELGSAddv_20.jpg
Lineares Gleichungssystem lösen
Du addierst beide Gleichungen: /wp-content/uploads/media/kem_LGuU_LGuUELGSAddv_21.jpg

Du berechnest x:/wp-content/uploads/media/kem_LGuU_LGuUELGSAddv_22.jpgDas Gleichungssystem hat also genau eine Lösung.

Du setzt den Wert für x in beide Ausgangsgleichungen ein: /wp-content/uploads/media/kem_LGuU_LGuUELGSAddv_23.jpg

/wp-content/uploads/media/kem_LGuU_LGuUELGSAddv_24.jpg

Du erhältst in beiden Gleichungen dasselbe Ergebnis für y und damit das Wertepaar

( x ; y ) = (2;-3)

als Lösung.

L={(2;-3)}

Anzahl der Lösungen

Bei linearen Gleichungssystemen gibt es drei verschiedene Möglichkeiten für die Anzahl der Lösungen:

/wp-content/uploads/media/kem_LGuU_LGuUELGSAddv_25.jpg

keine Lösung

Löse folgendes Gleichungssystem in ℚ:

/wp-content/uploads/media/kem_LGuU_LGuUELGSAddv_26.jpg

Lösung bestimmen
Du addierst die Gleichungen:

/wp-content/uploads/media/kem_LGuU_LGuUELGSAddv_27.jpg

Das Gleichungssystem hat keine Lösung, da bei der Addition der Gleichungen eine falsche Aussage entsteht:

0 = 18

Die Lösungsmenge ist leer: L={ }

Wie viele Lösungen hat das Gleichungssystem in ℚ?

/wp-content/uploads/media/kem_LGuU_LGuUELGSAddv_28.jpg

unendlich viele Lösungen

Löse folgendes Gleichungssystem in ℚ:

/wp-content/uploads/media/kem_LGuU_LGuUELGSAddv_29.jpg

Lösung bestimmen
Du löst das lineare Gleichungssystem:

/wp-content/uploads/media/kem_LGuU_LGuUELGSAddv_30.jpg

Das Gleichungssystem hat unendlich viele Lösungen, da bei der Addition der Gleichungen eine Aussage entsteht, die unabhängig von x stets wahr ist:

0 = 0

Für jeden x-Wert in ℚ erhältst du nach Einsetzen in die Gleichungen genau einen Wert für y.Durch Umstellen einer der beiden Ausgangsgleichungen erhältst du:

y = 4 - 3 x

Es ergibt sich folgende Lösungsmenge: L = { x ; 4 - 3 x |x ∈ ℚ}

Wie viele Lösungen hat das Gleichungssystem in ℚ?

/wp-content/uploads/media/kem_LGuU_LGuUELGSAddv_31.jpg


Jetzt starten mit bettermarks

Ich bin LehrerIch bin Elternteil

Erfolgreich Mathe lernen mit bettermarks.

Mit den adaptiven Mathebüchern von bettermarks können Schüler Aufgaben auf dem Tablet, dem Computer und dem Smartphone rechnen.
Mehr erfahren ›

bettermarks

StartseiteMathe-Portal
Lehren
LernenPreiseHilfe

Unternehmen

bettermarks.com
Über unsNewsPresseJobsAnfahrtKontakt

Service

RegistrierungLoginPasswort vergessenOnline-Schulung
(030) 300 2440 00 
Montag bis Freitag 8:30 - 17 Uhr
© Copyright 2017 - bettermarks GmbH - All Rights Reserved.
ImpressumAGBDatenschutz
twitterfacebookgoogle-pluslinkedinyoutubexingmenu