Telefon: (030) 300 2440 00 
– Mo bis Fr von 8:30 - 17 Uhr
Über unsNewsKontakt
LernenLehrenWirkungPreiseHilfeAppEinloggen

Satzgruppe des Pythagoras

Online Mathe üben

  • Interaktive Aufgaben, Lösungswege und Tipps
  • Automatische Auswertungen und Korrektur
  • Erkennung von Wissenslücken

Ich bin Schüler

Ich bin Elternteil

Ich bin Lehrer

Anwendungen zum Satz des Pythagoras

Hier erfährst du, wie du den Satz des Pythagoras auf mathematische Probleme aus dem Alltag anwenden kannst. Lösen von Anwendungsaufgaben Schritt für Schritt Rechtwinkligkeit prüfen Lösen von Anwendungsaufgaben Schritt für Schritt Der Satz des Pythagoras hat eine Vielzahl von Anwendungen: mit Hilfe des Satzes lassen sich zum Beispiel die Bildschirmdiagonale eines Fernsehers, die Höhe einer Leiter, Entfernungen in Luftlinie und vieles mehr berechnen. In diesen Anwendungen ist immer rechtwinkliges Dreieck im Spiel, doch dies ist nicht immer so offensichtlich. Deshalb ist es wichtig, dass du beim Lösen solcher Aufgaben Schritt für Schritt vorgehst. Üblicherweise gibt man bei einem Bildschirm die…

Begründen und Beweisen

Hier erfährst du, wie du den Satz des Pythagoras beweisen kannst.Der Satz ist nach Pythagoras von Samos (* um 570 v. Chr.; † nach 510 v. Chr.) benannt. Er war aber schon lange vor Pythagoras bekannt.Die Babylonier und ägypter haben bereits um 1600 v. Chr. die Zusammenhänge am rechtwinkligen Dreieck erkannt und sie als selbstverständlich hingenommen. Begründen und beweisen Begründen und beweisen Ein Beweis ist eine logische Begründung mit Allgemeingültigkeit. Möchtest du zum Beispiel den Satz des Pythagoras beweisen, so genügt es nicht, die Gleichung a + b = c an einigen rechtwinkligen Dreiecken exemplarisch nachzuprüfen. Auch die Begründung „Es…

Berechnungen an Figuren und Körpern

Hier erfährst du, wie du mit dem Satz des Pythagoras Streckenlängen in Figuren und Körpern berechnen kannst. Höhe im gleichseitigen Dreieck Diagonale im Quadrat Raumdiagonale im Quader Höhe einer Pyramide Höhe im gleichseitigen Dreieck In einem gleichseitigen Dreieck mit der Seitenlänge a und der Höhe h gilt: h = a Durch die Höhe wird das gleichseitige Dreieck in zwei kongruente rechtwinklige Dreiecke geteilt.Die Kathetenlängen sind h und a , die Hypotenusenlänge ist a . Nach dem Satz des Pythagoras gilt: a = h + a Du stellst nach h um, ziehst die Wurzel und vereinfachst so weit wie möglich: Also:…

Höhensatz und Kathetensatz

Hier lernst du den Kathetensatz und den Höhensatz kennen. Diese beiden Sätze und der Satz des Pythagoras bilden zusammen die Satzgruppe des Pythagoras. Der Kathetensatz des Euklid Der Höhensatz des Euklid Der Kathetensatz des Euklid In einem rechtwinkligen Dreieck teilt die Höhe auf der Hypotenuse diese in zwei Strecken, die Hypotenusenabschnitte p und q. In einem rechtwinkligen Dreieck ABC mit rechtem Winkel im Punkt C und Hypotenusenabschnitten p und q gilt: a = p * c und b = q * c Flächeninhalte vergleichen Der Flächeninhalt des Kathetenquadrats beträgt 36 cm * = . Der Flächeninhalt des Rechtecks über dem…

Satz des Pythagoras und seine Umkehrung

Der Satz des Pythagoras und seine Umkehrung Hier erfährst du, was der Satz des Pythagoras und seine Umkehrung besagen und was ein pythagoreisches Zahlentripel ist. Der Satz des Pythagoras Seitenlängen im rechtwinkligen Dreieck berechnen Die Umkehrung des Satzes des Pythagoras Pythagoreische Zahlentripel Der Satz des Pythagoras Fast jeder hat den Satz schon einmal gehört: a + b = c . Du kannst die Aussage des Satzes nachvollziehen, wenn du über den Seiten eines rechtwinkligen Dreiecks jeweils ein Quadrat zeichnest. Dann erhältst du diese Figur: In einem rechtwinkligen Dreieck ABC mit dem rechten Winkel im Punkt C sind a und b…

Wurzellängen und Abstandsbestimmung im Koordinatensystem

Hier erfährst du, wie du eine Strecke konstruieren kannst, deren Länge gleich einem vorgegebenen Wurzelausdruck ist, und wie du den Abstand zwischen zwei Punkten im Koordinatensystem berechnen kannst. Geometrische Darstellung von Quadratwurzeln Abstandsberechnungen im Koordinatensystem Geometrische Darstellung von Quadratwurzeln Die Wurzel einer natürlichen Zahl ist meistens eine irrationale Zahl , z.B. , , , , ...Dennoch lassen sich diese Zahlen geometrisch als Längen von Strecken darstellen. Zum Beispiel hat die Diagonale in einem Einheitsquadrat die Länge . Dies folgt aus dem Satz des Pythagoras. Auf ähnliche Weise lässt sich jede irrationale Zahl der Form n (n natürliche Zahl) als Länge…


Jetzt starten mit bettermarks

Ich bin LehrerIch bin Elternteil

Erfolgreich Mathe lernen mit bettermarks.

Mit den adaptiven Mathebüchern von bettermarks können Schüler Aufgaben auf dem Tablet, dem Computer und dem Smartphone rechnen.
Mehr erfahren ›

bettermarks

StartseiteMathe-Portal
Lehren
LernenPreiseHilfe

Unternehmen

bettermarks.com
Über unsNewsPresseJobsAnfahrtKontakt

Service

RegistrierungLoginPasswort vergessenOnline-Schulung
(030) 300 2440 00 
Montag bis Freitag 8:30 - 17 Uhr
© Copyright 2017 - bettermarks GmbH - All Rights Reserved.
ImpressumAGBDatenschutz
twitterfacebookgoogle-pluslinkedinyoutubexingmenu