Telefon: (030) 300 2440 00 
– Mo bis Fr von 8:30 - 17 Uhr
Über unsHilfeNewsKontaktApp
LernenLehrenWirkungPreiseDEMOEinloggen

Eulersche Zahl e

Online Mathe üben

  • Interaktive Aufgaben, Lösungswege und Tipps
  • Automatische Auswertungen und Korrektur
  • Erkennung von Wissenslücken

Ich bin Schüler

Ich bin Elternteil

Ich bin Lehrer

Die Eulersche Zahl e ist definiert durch :

\(e= \lim_{n\to\infty}\left(1+ \frac{1}{n} \right)^{n}=2,71828...\)

oder als Reihenentwicklung

\(e = 1+ \frac{1}{1!} + \frac{1}{2!} + \frac{1}{3!} +...\) ,

wobei n! für die ->Fakultät \(1 \cdot 2 \cdot ... \cdot n\) steht.

Sie ist neben der Konstanten \(\pi\) die wichtigste nichtrationale Zahl der Mathematik. In der Analysis dient sie als Basis der Exponentialfunktion \(f(x) = e^x\), die zur Modellierung von Wachstumsprozessen verwendet wird. Klassisches Beispiel ist die stetige Verzinsung eines Kapitals. Die Umkehrfunktion der Exponentialfunktion ist der natürliche Logarithmus \(g(x)=\ln x\), der für alle positiven x definiert ist.


Jetzt starten mit bettermarks

Ich bin LehrerIch bin Elternteil

Erfolgreich Mathe lernen mit bettermarks.

Mit den adaptiven Mathebüchern von bettermarks können Schüler Aufgaben auf dem Tablet, dem Computer und dem Smartphone rechnen.
Mehr erfahren ›

bettermarks

StartseiteMathe-Portal
Lehren
LernenPreiseHilfe

Unternehmen

bettermarks.com
Über unsNewsPresseJobsAnfahrtKontakt

Service

RegistrierungLoginPasswort vergessenOnline-Schulung
(030) 300 2440 00 
Montag bis Freitag 8:30 - 17 Uhr
© Copyright 2017 - bettermarks GmbH - All Rights Reserved.
ImpressumAGBDatenschutz
twitterfacebookgoogle-pluslinkedinyoutubexingmenu