Für \(\sin\), \(\cos\) und \(\tan\) zweier Winkel \(\alpha\) und \(\beta\) gilt:
\(\sin (\alpha + \beta)=\sin(\alpha)\cos(\beta)+\cos(\alpha)\sin(\beta)\) und
\(\sin (\alpha - \beta)=\sin(\alpha)\cos(\beta)-\cos(\alpha)\sin(\beta)\)
\(\cos (\alpha + \beta)=\cos(\alpha)\cos(\beta)-\sin(\alpha)\sin(\beta)\) und
\(\cos (\alpha - \beta)=\cos(\alpha)\cos(\beta)+\sin(\alpha)\sin(\beta)\)
\(\tan (\alpha + \beta)=\frac{\tan(\alpha)+\tan(\beta)}{1-\tan(\alpha)\tan(\beta)}\)
\(\tan (\alpha - \beta)=\frac{\tan(\alpha)-\tan(\beta)}{1+\tan(\alpha)\tan(\beta)}\)