Satz des Thales

Online Mathe üben

Der Satz des Thales

Der nach dem griechischen Mathematiker und Philosophen Thales von Milet (~ 625 v.Chr. – ~ 547 v.Chr.) benannte Satz des Thales besagt:
Wenn der Punkt C auf dem Kreis mit dem Durchmesser AB ¯ liegt, dann hat das Dreieck ABC bei C einen rechten Winkel .
 
Der Kreis mit dem Durchmesser AB ¯ heißt daher auch Thaleskreis dieser Strecke.
 
Die Umkehrung des Satzes gilt ebenfalls:
In einem rechtwinkligen Dreieck ABC mit dem rechtem Winkel im Punkt C liegt der Punkt C auf dem Kreis mit demDurchmesser AB ¯ .
kem GeoII GeoIIDreiSdT 1 Satz des Thaleskem GeoII GeoIIDreiSdT 2 Satz des Thales
 
Nach Division durch 2 erhältst du:
 
90 ° = α + β = γ

Konstruktionen mit dem Satz des Thales

Du kannst den Satz des Thales nutzen, um ein rechtwinkliges Dreieck zu konstruieren.
Rechtwinkliges Dreieck ABC mit dem rechten Winkel im Punkt C
c = 7 cm a = 4 cm
 
Du beginnst mit der Seite, die dem rechten Winkel gegenüberliegt, also der Seite AB ¯ mit der Länge c.
 
kem GeoII GeoIIDreiSdT 3 Satz des Thales
Hast du statt der Seitenlänge a den Winkel β gegeben, trägst du im Punkt B den Winkel an.
 
Der Schnittpunkt des Schenkels mit dem Thaleskreis ist der Punkt C.

Winkelberechnungen mit dem Satz des Thales

Sind die Voraussetzungen aus dem Satz des Thales erfüllt, kannst du mit seiner Hilfe die Größe von Winkeln berechnen.
kem GeoII GeoIIDreiSdT 4 Satz des Thaleskem GeoII GeoIIDreiSdT 5 Satz des Thales
kem GeoII GeoIIDreiSdT 6 Satz des Thaleskem GeoII GeoIIDreiSdT 7 Satz des Thales

Online Mathe üben!